16 Low-

Emerging Technology Grant Call (ETGC)

5. The ETGC supports nascent yet promising low-carbon energy R&D areas at lower technological readiness levels (TRLs 1-2) such as hydrogen, carbon capture utilisation and storage (CCUS) and other low-carbon energy areas that have the potential to open up more options for abating the emissions of the power and industry sectors.

6. Around \$12 million will be awarded to support ten projects⁴ under the ETGC to fund R&D in low concentration carbon capture, advanced catalysts for ammonia cracking, and coatings for hydrogen pipeline.

-END-

Annex A: Details of Awarded DHP projects Annex B: Details of Awarded ETGC projects

⁴ Details on the ten ETGC projects can be found at Annex B.

ANNEX A

Details of Awarded DHP Projects

SN	Value Chain	Proposal Title	Proposal Description	Project Investigator (PI) Team
1.	Regulatory	Post-Release Impact		
	Standards	Mitigation Evaluation		

			1	
			improved and more efficient process will	
			reduce the energy penalty of transporting H_2	
			in the form of ammonia and reduce the cost	and Dr Ye Shaochun,
			of H ₂ adoption in Singapore.	
				Academic/Industry Collaborator(s): Fudan University; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Malayan Daching Co Pte Ltd; Kellogg Brown & Root Asia Pacific Pte Ltd; BNF Engineering Pte Ltd; Richz Holdings Pte Ltd; Vnergy Pte Ltd; CADFEM SEA; Measurement Advanced Engineering Pte Ltd; Fraction Technologies Pte Ltd; ST Engineering; Linde Gas Singapore Pte Ltd;
				KoolLogix Pte Ltd; Orient Technology Pte Ltd
3.	Ammonia Cracking	Development of on-site, on- demand	Project aim:	Lead PI Institute: Nanyang Technological University (NTU)
		ammonia-to-		Lead PI:
		hydrogen e- cracking		Prof Xu Zhichuan Jason, NTU
		bench-top		Project Team:
		chemical mini-factory	Potential benefits: Releasing H ₂ from ammonia is an energy intensive process. An	Prof Chen Wei,

improved and more efficient process will reduce the energy penalty of transporting H ₂ in the form of ammonia and reduce the cost	Research and Education in Singapore (CARES); Dr Kamal Elouarzaki, NTU; Dr Chen Luwei ISCE ² ; Asst Prof He	
of H ₂ adoption in Singapore.	Qian, NUS Academic/Industry Collaborator(s): NTU; University at Buffalo; AGC Asia Pacific Pte Ltd; Surbana Jurong Pte Ltd; Sydrogen Energy Pte Ltd; iSEACO Shipmanagement Pte Ltd; Synfuels China Technology Co. Ltd; China Hydrogen Energy Technology Co. Ltd; Jiangsu Mesocatalysis Materials Technology Co. Ltd	

4. Ammonia

Potential benefits: Integrating ammonia cracking with a gas turbine and recycling the waste heat from the turbine for use in the cracking process will not only increa

SN	Research Theme / Value Chain	Proposal Title	Proposal Description	Project Investigator (PI) Team
1.	CCUS / Capture	High-throughput screening of redox- active adsorbents	Project aim: This proposal develops an energy efficient and space efficient carbon capture technology	Lead PI Institute: National University of Singapore (NUS)
		for electrochemically mediated carbon capture	that can capture CO ₂ from low- concentration sources, using electrochemically mediated carbon capture (EMCC) concepts.	Lead PI: Asst Prof Mao Xianwen, NUS Academic/Industry
			Potential benefits: Promote a solution to capture diluted flue gas from power generation facilities.	Collaborator(s): NUS; Massachusetts Institute of Technology; Altara Infrastructure Services Pte Ltd
2.	CCUS / Capture	A New Class of Two-Dimensional Covalent Organic Framework-Based	Project aim: This proposal develops an energy efficient and space efficient carbon capture technology that can capture CO ₂ from various	Lead PI Institute: Nanyang Technological University (NTU) Lead PI:
		Membranes for Competitive Carbon Capture	sources with versatility, using covalent organic framework (COF)- based membranes concepts.	Prof Wang Rong, NTU Project Team:

			Potentially scalable, as plastic waste is the fourth largest solid waste stream currently.	Project Team: Dr Jason Lim Yuan Chong,
			Potential benefits: Valorising two waste products, carbon dioxide and plastics, towards a circular economy.	Wu Jie, NUS
5.	CCUS / Utilisation	Enzymatic CO2 utilization: towards efficient biocatalytic carboxylation of aromatics to	Project aim: This proposal aims to engineer enzymes that turns carbon dioxide into useful acids/chemicals with enhanced activity and stability.	Lead PI Institute: NUS Lead
		produce useful chemicals	Potential benefits: Potential to produce useful chemicals in a carbon-negative process, as well as environmentally friendly way (i.e. no need high temperature/pressure).	

			Potential benefits: A possible solution to obtain hydrogen as a by- product, which can be used for other purposes (i.e. power generation).	Prof Chen Wei, NUS Academic/Industry Collaborator(s): Huazhong University of Science and Technology
7.	H2 / Ammonia Cracking	Development of decentralized, on- demand ammonia- to-hydrogen e-		1

10.	Others / Energy	Plug flow pattern for	Project aim: This proposal proposes	Lead PI Institute: NUS
	Harvesting	harvesting rain	the harvesting of electricity from rain	
		energy via solid-	droplets using advanced types of	Lead PI:
		liquid charge	materials.	Assoc Prof Soh Siow Ling,
		separation		NUS
			Potential benefits: This can be	
			applicable for tropical settings due	Project Team:
			to the heavy rainfall and be an alternative way for Singapore to generate renewable electricity.	Assoc Prof Zhao Dan, NUS