ANNEX A

LIST OF LCER PHASE 1 PROJECTS AND LCER PHASE 2 DIRECTED HYDROGEN PROGRAMME TOPICS

List of LCER Phase 1 Projects

SN	Research	Proposal Title, Lead PI, and	Proposal Description
	Theme	Organisations	

1

		: Improve the safety of $\rm H_2$ use, allow deployment of sensors economically to enable trading and safety and increase confidence towards adoption of $\rm H_2$ for downstream uses
3	H.	

of better heat transfer, therefore reducing the cost of importing H₂ using this carrier. A comprehensive financial model to access the cost of the H₂ supply chain in Singapore will also be developed by collaborating with our industrial partners. CCUS : Alternative Sand from : To examine the processes for the capture and 5 Carbon Dioxide and Waste Materials mineralisation of CO₂ into alternative sand that can be used for

: Dr. Bu Jie, A*STAR

: A*STAR; NUS; NTU; Samwoh Innovation Centre Pte Ltd; EnGro Corporation Ltd

building and construction purposes.

: Prof Chen Wei, NUS : NUS; NTU; A*STAR;

10	CCUS	: Process Systems	: This project proposes a new paradigm in which
		Engineering for Guiding R&D on Low-	materials research is conducted under the continuous of Process
		Carbon Technologies	Systems Engineering (PSE) in order to keep focus on the KPIs right
			from the start of research.
		: Prof Iftekhar A Karimi. NUS	
		: NUS; ExxonMobil	: It develops digital toolkits that predict the system-level performances of several CCUS and H ₂ projects,
			helping to guide them to faster and successful scale-up.
11	CCUS	: Adsorptive Carbon	: To develop more efficient ways to capture CO ₂ from
		Capture Using Framework Materials	exhaust streams. This project enhances CO ₂ capture by using
		: Assoc Prof Zhao Dan, NUS	state-of-the-art framework sorbents engineered for high CO ₂
			selectivity, high intrinsic stability, and facile regenerability from
		: NUS; and Northwestern University; ExxonMobil	moisture.
			: Improve the capture rate of CO ₂ from existing
			exhaust/flue gas which is the first step in CCUS.
12	CCUS	· Nanastructurad Catalyata	1

12 CCUS : Nanostructured Catalysts

for Direct CO₂ Hydrogenation to Higher

Alcohols and Fuels

: Asst Prof Sergey Kozlov, NUS

	Improve the H ₂ tolerant properties of structural materials and coatings for pipelines to reduce H ₂ embrittlement and leakage for cost-effective, large-scale distribution of H ₂	
	Develop methods to repurpose or retrofit existing liquid natural gas tanks for H ₂ or H ₂ carrier storage for H ₂ distribution	
Safety and Regulatory Standards	Modelling and simulation research and development projects would help regulators better understand the technical assumptions and limitations of existing standards	
	Design improved hazard mitigation systems and new H ₂ infrastructure with smaller health and safety buffers	
	to fit Singapore's context	
	Develop suitable preventive, corrective mitigative, and/or 'inherently safe' measures for the potential usecases for H ₂ energy	
	Safety and regulatory standards for Singapore H ₂ energy	
	Design improved hazard mitigation systems and new H ₂ infrastructure with smaller health and safety buffers to fit Singapore's context	